

Tuesday 20 June 2017 – Afternoon

A2 GCE MATHEMATICS

4735/01 Probability & Statistics 4

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4735/01
- List of Formulae (MF1)

Other materials required: • Scientific or graphical calculator Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer **Book.** If additional space is required, you should use the lined page(s) at the end of the Printed Answer Book. The question number(s) must be clearly shown.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the barcodes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of **12** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

Answer **all** the questions.

1 A meteorologist claims that the median daily rainfall in London is 2.2 mm. A single sample sign test is to be used to test the claim, using the following hypotheses:

 H_0 : a sample comes from a population with median 2.2,

 H_1 : the sample does not come from a population with median 2.2.

30 randomly selected observations of daily rainfall in London are compared with 2.2, and given a '+' sign if greater than 2.2 and a '-' sign if less than 2.2. (You may assume that no data values are exactly equal to 2.2.) The test is to be carried out at the 5% level of significance. Let the number of '+' signs be *k*. Find, in terms of *k*, the critical region for the test showing the values of any relevant probabilities. [4]

2 The independent discrete random variables *X* and *Y* can take the values 0, 1 and 2 with probabilities as given in the tables.

x	0	1	2	У	0	1	2
P(X = x)	0.5	0.3	0.2	$\mathbf{P}(Y=y)$	0.5	0.3	0.2

The random variables U and V are defined as follows:

$$U = XY, V = |X - Y|.$$

(i) In the Printed Answer Book complete the table giving the joint distribution of U and V .	[4]
(ii) Find Cov (U, V) .	[5]
(iii) Find $P(UV = 0 V = 2)$.	[2]

3 For events A, B and C it is given that P(A) = 0.6, P(B) = 0.5, P(C) = 0.4 and $P(A \cap B \cap C) = 0.1$. It is also given that events A and B are independent and that events A and C are independent.

(i) Find
$$P(B|A)$$
. [1]

- (ii) Given also that events B and C are independent, find $P(A' \cap B' \cap C')$. [4]
- (iii) Given instead that events *B* and *C* are **not** independent, find the greatest and least possible values of $P(A' \cap B' \cap C')$. [5]
- 4 The heights of eleven randomly selected primary school children are measured. The results, in metres, are

Girls 1.48 1.31 1.63 1.38 1.56 1.57 Boys 1.44 1.35 1.32 1.28 1.27.

- (i) Use a Wilcoxon rank-sum test, at the 1% significance level, to test whether primary school girls are taller than primary school boys.
- (ii) It is decided to repeat the test, using larger random samples. The heights of twenty girls and eighteen boys are measured. Find the greatest value of the test statistic W which will result in the conclusion that there is evidence, at the 1% level of significance, that primary school girls are taller than primary school boys. [6]

- 5 The discrete random variable X is such that $P(X = x) = \frac{3}{4} \left(\frac{1}{4}\right)^x$, x = 0, 1, 2, ...
 - (i) Show that the moment generating function of X, $M_X(t)$, can be written as $M_X(t) = \frac{3}{4 e^t}$. [4]

[2]

[5]

[5]

[4]

- (ii) Find the range of values of t for which the formula for $M_X(t)$ in part (i) is valid.
- (iii) Use $M_X(t)$ to find E(X) and Var(X).
- 6 The continuous random variable *Z* has probability density function

$$f(z) = \begin{cases} \frac{4z^3}{k^4} & 0 \le z \le k, \\ 0 & \text{otherwise,} \end{cases}$$

where *k* is a parameter whose value is to be estimated.

(i) Show that $\frac{5Z}{4}$ is an unbiased estimator of k. [4] (ii) Find the variance of $\frac{5Z}{4}$. [5]

The parameter k can also be estimated by making observations of a random variable X which has mean $\frac{1}{2}k$ and variance $\frac{1}{12}k^2$. Let $Y = X_1 + X_2 + X_3$ where X_1, X_2 and X_3 are independent observations of X.

- (iii) cY is also an unbiased estimator of k. Find the value of c. [2]
- (iv) For the value of c found in part (iii), determine which of $\frac{5Z}{4}$ and cY is the more efficient estimator of k. [4]

7 The discrete random variable *Y* has probability generating function $G_Y(t) = \frac{1}{126}t(64-t^6)(1-\frac{t}{2})^{-1}$.

- (i) Find P(Y = 3).
- (ii) Find E(Y).

END OF QUESTION PAPER

Q	uestio	n	Answer	Marks	Guidance	e
1			F(9) = 0.0214, F(10) = 0.0494	M1	use of tables, even if 1 tail.	Allow even if incorrect eg look for 0.0025.
			F(20) = 0.9786, F(19) = 0.9506	M1	look for 2.5% at both ends	Can be implied by attempt at k≥21.May be by symmetry. N(15,7.5) M1M1A1A0 max.
			$k \leq 9$	A1		
			$k \ge 21$	A1		
				[4]		
2	(i)		$V \cup U = 0 = 1 = 2 = 4$	B1	for correct U and V values	
			0 0.25 0.09 0 0.04	M1	attempt to allocate each (x, y) to correct cell.	
			1 0.3 0 0.12 0	A1	at least 8 cells correct	
			2 0.2 0 0 0	A1	all 12 correct	
				[4]		
	(ii)		E(U) = 0.09 + 0.24 + 0.16 = 0.49	M1	their totals	
			E(V) = 0.42 + 0.4 = 0.82	M1	»» »»	
			$E(UV) = 2\Box 0.12 = 0.24$	M1	their table	
			$C_{OV}(U V) = "0.24" - "0.49" \square "0.82" = -0.1618$	M1 A1	Allow -0 162	
				[5]		
	(iii)		$P(UV = 0 \cap V = 2)/P(V = 2) = 0.2/0.2 = 1$	M1A1	Or verbal explanation.	Either num/denom correct M1, but
				[2]		NOT $eg \frac{0.88 \times 0.2}{0.2}$
3	(i)		0.5	B1		
				[1]		

Q	Questior	n Answer	Marks	Guidance	
	(ii)	0.16 + 0.2 + 0.1 + 0.14 + 0.1 + 0.1 + 0.06	M2	M1 for at least 4 correct.	0.6+0.5+0.4-0.3-0.24-0.2+0.1=0.86
			4.1		M2A1. M1 if incorrect coefficient of P($A \cap B \cap C$) used in otherwise correct formula.
		= 0.86 1 - "0.86"	Al		
		0.14	A1		
			[5]		
	(iii)	greatest : $P(A' \cap B \cap C') = 0.04$, $P(A' \cap B \cap C) = 0.16$ $P(A' \cap B' \cap C) = 0$	M1	for any of these soi eg P(B \cap C)=0.26	Greatest: 1-(0.6+0.5+0.4-0.3-0.24- 0.26+0.1) = 0.2
		least: $P(A' \cap B \cap C') = 0.2$, $P(A' \cap B \cap C) = 0$ $P(A' \cap B' \cap C) = 0.16$	M1	for any of these soi eg P(B \cap C)=0.1	Least 1-(0.6+0.5+0.4-0.3-0.24- 0.1+0.1) = 0.04
		greatest $1 - (0.16 + 0.2 + 0.04 + 0.14 + 0.1 + 0.16) = 0.2$	M1A1	M1 for fully correct method for either.	
		least 1 $-(0.16+0.2+0.2+0.14+0.1+0.16) = 0.04$	A1		
			[5]		
4	(i)	G: 8 3 11 6 9 10 P: 7 5 4 2 1	B1	Allow 1 set.	
		B. 7 5 4 2 1 $R_m = 19 \{5(6+5+1) - 19 = 41\} W = 19$	B1,B1	follow through incorrect ranks for these marks.	
		H ₀ : two samples come from identical pops H ₁ : samples do not come from identical pops "19" > 17, do not reject H ₀ .	B1 M1	or $m_G = m_B$ and $m_G > m_B$	If in words, must say popn.
		insufficient evidence, at 1% level, that p.s. girls are taller than p.s. boys.	A1	cwo. Contextualised, not over-assertive.	
			[6]		
	(ii)	N(351, 1170)	B1,B1		

Q	Question		Answer		Guidance	2
			W + 0.5 - 351 2.226	M1	allow M1 if wrong or no cc. Must be -ve z.	Allow =.
				B1	2.326 seen	
			W < 270.0	A 1	Allow 271 for this more but not from 271 4	
			W < 270.9 W = 270		Allow 2/1 for this mark, but not from 2/1.4	
			W = 270	AI [6]	anows	
				נטן		
5	(i)		<u>∞</u>	M1		-
	()		$E(e^{tx}) = \sum e^{tx} (\frac{3}{4}) (\frac{1}{4})^{x}$			
			0			
			$=\frac{3}{4}\left(\sum_{i=1}^{\infty}\left(\frac{e^{i}}{e^{i}}\right)^{x}\right)$	M1	Establish that series is a GP involving t	
			3(1)			
			$\overline{4}\left(\frac{1-\frac{1}{4}e^{t}}{1-\frac{1}{4}e^{t}}\right)$	M1	use formula for sum to infinity of CD	
			3	111	use formula for sum to mininty of OF.	
			$\frac{S}{4-e^t}$ AG	A1		
				[4]		
				1.1		
	(ii)		$\frac{1}{2}e^t < 1$	M1	Allow for M1, but not A1.	
			$t < \ln \Lambda$	A1	t<1.39	
				[2]		
	(iii)		M' (t) = $3e^{t}(4-e^{t})^{-2}$ E(Y) = $3 \times 1 \times 3^{-2} = \frac{1}{2}$	M1	M1 for diffn and sub $t = 0$.	$(4-e^t)^{-2}$ seen
			$M_X(t) = 5c(1 - c) - L(X) = 5 \times 1 \times 5 - \frac{1}{3}$	A1	cwo	
			$3(4-e^t)^2e^t+6e^{2t}(4-e^t)$	2.54		
			$M_X(t) = \frac{(4 - e^t)^4}{(4 - e^t)^4}$	M1	for diffn using prod/quot rules and sub $t = 0$.	
			$3 \times 3^2 \times 1 + 6 \times 1 \times 3$			
			$E(X^2) = \frac{5 \times 5 \times 1 + 5 \times 1 \times 5}{2^4} = \frac{5}{9}$	M1	Dep +ve var.	
			5 9		A	

Q	uestio	n	Answer	Marks	Guidance	
			$\operatorname{Var}(X) = \frac{5}{9} - \left(\frac{1}{3}\right)^2 = \frac{4}{9}$	A1 [5]		
6	(i)		$E(Z) = \int_{0}^{k} z \frac{4z^{3}}{k^{4}} dz = \left[\frac{4z^{5}}{5k^{4}}\right]_{0}^{k} = \frac{4k}{5}$ $E(SZ) = \frac{5(4k)}{5(4k)} = \frac{1}{2}$	M1A1		
			$E\left(\frac{1}{4}\right) = \frac{1}{4}\left(\frac{1}{5}\right) = k.$	M1A1 [4]		
	(ii)		$E(Z^{2}) = \int_{0}^{k} z^{2} \frac{4z^{3}}{5k^{4}} dz = \left[\frac{4z^{6}}{6k^{4}}\right]_{0}^{k} = \frac{2k^{2}}{3}$	M1		
			$Var(Z) = \frac{2k^2}{3} - \left(\frac{4k}{5}\right)^2 = \frac{2k^2}{75}$ (57) 25 2k^2 k^2	M1A1		
			$\operatorname{Var}\left(\frac{3Z}{4}\right) = \frac{23}{16} \times \frac{2\kappa}{75} = \frac{\kappa}{24}$	M1A1 [5]		
	(iii)		$E(cY) = k \qquad c(\frac{1}{2}k + \frac{1}{2}k + \frac{1}{2}k) = k$ $c = \frac{2}{3}$	M1 A1		
	(iv)		$\operatorname{Var} Y = \frac{3k^2}{12}$ $\operatorname{Var} \left(\frac{2Y}{2}\right) = \frac{k^2}{2}$	B1 B1 B1		
			$\frac{k^{2}}{\frac{24}{5z}} = \frac{k^{2}}{9}$ more efficient.	M1ft A1 [4]		

4735/01

(Questio	on	Answer	Marks	Guidance		
7	(i)		$\frac{1}{126}(64t - t^7)(1 + \frac{t}{2} + \frac{t^2}{4} +)$ $P(Y = 3) = \text{coeff of } t^3$ $= \frac{16}{126} = \frac{8}{63}$	M1A1 M1 A1 [5]	M1 for attempt at bin exp, as far as term in t^2 M1 for coeff of t^3 seen or implied Attempt to find term in t^3 Answer, 16/126 oe allow 0.127		
	(ii)		$G'_{Y}(t) = \frac{1}{126} (64 - 7t^{6})(1 - \frac{t}{2})^{-1} + \frac{1}{252} (64t - t^{7})(1 - \frac{t}{2})^{-2} + G'_{Y}(1) = \frac{40}{21}$	M1 A1 M1A1 [4]	attempt at product or quotient rule. sub $t = 1$ for M1. Allow 1.90	$P(1) = \frac{64}{126}, P(2) = \frac{32}{126},P(6) = \frac{2}{126}$ B1 for Y = 1, 2,, 6 B1 for all probs correct M1 for $\sum xp$ used A1 for $\frac{40}{21}$	